Respiratory cycle entrainment of septal neurons mediates the fast coupling of sniffing rate and hippocampal theta rhythm
نویسندگان
چکیده
Memory for odour information may result from temporal coupling between the olfactory and hippocampal systems. Respiration defines the frequency of olfactory perception, but how the respiratory rate affects hippocampal oscillations remains poorly understood. The afferent connectivity of the medial septum/diagonal band of Broca complex (MS/DB) proposes this region as a crossroads between respiratory and limbic pathways. Here we investigate if the firing rates of septal neurons integrate respiratory rate signals. We demonstrate that approximately 50% of MS/DB neurons are temporally correlated with sniffing frequency. Moreover, a group of slow-spiking septal neurons are phase-locked to the sniffing cycle. We show that inter-burst intervals of MS/DB theta cells relate to the sniff rate. Intranasal odour infusion evokes sniff phase preference for the activity of fast-spiking MS/DB neurons. Concurrently, the infusion augments the correlation between sniffing and limbic theta oscillations. During periods of sniffing-theta correlation, CA1 place cells fired preferentially during the inhalation phase, suggesting the theta cycle as a coherent time frame for central olfactory processing. Furthermore, injection of the GABAergic agonist muscimol into medial septum induces a parallel decrease of sniffing and theta frequencies. Our findings provide experimental evidence that MS/DB does not merely generate theta rhythm, but actively integrates sensorimotor stimuli that reflect sniffing rate. Such integration may provide temporal oscillatory synchronisation of MS/DB-innervated limbic structures with the sniffing cycle.
منابع مشابه
Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit
Before the onset of locomotion, the hippocampus undergoes a transition into an activity-state specialized for the processing of spatially related input. This brain-state transition is associated with increased firing rates of CA1 pyramidal neurons and the occurrence of theta oscillations, which both correlate with locomotion velocity. However, the neural circuit by which locomotor activity is l...
متن کاملComputational Study of Hippocampal-Septal Theta Rhythm Changes Due to Beta-Amyloid-Altered Ionic Channels
Electroencephagraphy (EEG) of many dementia patients has been characterized by an increase in low frequency field potential oscillations. One of the characteristics of early stage Alzheimer's disease (AD) is an increase in theta band power (4-7 Hz). However, the mechanism(s) underlying the changes in theta oscillations are still unclear. To address this issue, we investigate the theta band powe...
متن کاملSepto-hippocampal networks in chronically epileptic rats: potential antiepileptic effects of theta rhythm generation.
A series of experiments was carried out testing the hypothesis that the septal region decreases the hippocampal susceptibility to hyperexcitability states through theta rhythm generation. Medial septal neurons were simultaneously recorded with hippocampal field potentials to investigate the septo-hippocampal function in the pilocarpine model of chronic epilepsy. The theta rhythm from chronicall...
متن کاملGABAergic neurons of the medial septum lead the hippocampal network during theta activity.
Information processing in the hippocampus critically relies on its reciprocal interaction with the medial septum (MS). Synchronization of the septo-hippocampal system was demonstrated during both major hippocampal activity states, the regular theta rhythm and the large amplitude irregular activity. Previous experimental and modeling data suggest that the MS provides rhythmic drive to the hippoc...
متن کاملRhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells.
The basal forebrain plays important roles in arousal, learning, and memory by stimulating cortical activation characterized by rhythmic slow theta and high-frequency beta-gamma activities. Although cholinergic neurons play a significant part in these roles, other, including GABAergic, neurons appear to contribute. Using juxtacellular labeling with neurobiotin of neurons recorded within the magn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 39 شماره
صفحات -
تاریخ انتشار 2014